
It should be noted that all cases of determining heat ~lux considered here give good 
results, while the proposed method of flux determination is distinguished by simplicity and 
can be recommended for practical use. 
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TWO-PKASE ZONE DURINCs OF A BINARY MELT 

P. F. Zavgorodnii, L. P. Moroz, 
F. V. Nedopekin, and G. M. Sevost'yanov 

UDC 541.12.012:669.112.2 

A method is developed for calculating the solid--liquid zone, which is intermediate 
between the regions of the liquid and the solid phases, of a solidifying binary melt. 
Melts of Fe--C with different initial carbon contents were chosen as the binary melt. 

The thermal and diffusional processes occurring in the two-phase zone have considerable 
importance in the formation of the micro- and macrostructures of ingots and castings. 

The study of the kinetics of the movement of the zone under different conditions of 
crystallization and thequestion of the extent of the two-phase zone have great importance, 
since they determine the maintechnological properties of the metals. 

The processes of a two-phase zone were studied in a region for which a diagram (of half) 
is presented in Fig. la. 

The two-phase state of the medium at each point n is conveniently characterized by the 
function ~(n, Fo), representing the fraction of the solid phase in the liquid melt at the 
isotherm with the coordinate n at the time Fo [I, 2]. All the isotherms are assumed to be 
parallel planes perpendicular to the On axis. The coefficients of thermal conductivity 1 
and heat capacity Cp are the same and are equal for the solid and liquid phases. The con- 
centration C(n, Fo) of the admixture at one isotherm is the same at all points of the melt 
[3]. The character of the occurrence of diffusional processes allows one to assume that the 
rate of diffusion of the admixture into the solid phase is small in comparison with the rate 
of diffusion of the same admixture into the liquid melt. Crystals develop in the liquid 
phase in the process of crystallization. As this happens, the latent heat of fusion is re- 
leased, depending on the rate of change of the amount of solid melt. It is expedient to 
treat the effect of the developing crystals on the fields of temperature T(n, Fo) and concen- 
tration C(~, Fo) as the action of additional sources of heat and admixture. Moreover, we as- 
sume that concentration supercooling is absent within the two-phase zone. Mathematically, 
this means that the concentration and temperature are connected by the equation for the liq- 
uidus line on the equilibrium diagram of state [i, 2]. 

With allowance for the foregoing and for simple transformations of the equations of the 
quasiequilibrium theory of a two-phase zone [i, 2], the processes of mass and heat transfer 
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Fig. i. Diagram of crystallizing region (a) and 
time variation of the concentration and the frac- 
tion of the solid phase at the local point n = 0.6 
of the crystallizing region (b]. 

in a solid--liquid region in the absence of convection are described by the following system 
of equations in dimensionless form: 

Ol _ ~ [ 1 _ _  

OFo W - - S  q~(1--ko) [ l - - I  
1 - - I  

OS 1 Ol OS OzS 
OFo 1--  1 Oq Oq Oq z 

OI OS + ( 1 1) O z S ]  

a,l an L~ ~ ] ' 

1 - - k  o S Ol ; @ = - - ~ S .  

1 - -  l OFo 

/ 

For the liquid region of the crystallizing melt the system of equations of diffusion and 
heat transfer has the form 

aS O2S O0 1 020 

0 Fo On 2 ' O Fo Le Oq2 

To obtan an unambiguous solution to the problem we supplement the initial equations by 
the boundary conditions. 

Initial conditions (Fo = 0); 

S = l ,  O = l ,  l = O .  

Conditions at boundary: 

7 = a: 

as a o  q=0: - - = 0 ,  -0 ;  
aq a7 

os _ (l--ko)S de O=--q~S, l=const (const<l); 
aq d Fo ' 

7=e--& l=0. 

In the formulated problem it is desirable to change to new variables, which are intro- 
duced with the purpose of converting the region in question with boundaries (liquid and solid-- 
liquid) which move with time into regions of unit dimensions. The two-phase zone is convert~ 
ed into a unit region with the help of the coordinates 
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n - - ( , - - m  
x = <o<~< I), 

while for the liquid zone 

x , = ~  .(0~<x~<l). 

Performing~he approp=late Xra.~formations, a n d  assuming that the dimensionless time 
Fo' in the new coordinate system is identically equal to the time Fo in the old system, we 
obtain the systems of initial equations in the new variables; 

a s  ] 1 t 
at xS' + (~' - -  ~') '~- ax al 

( ) -  6 ( 1 - - 1 )  W + S =  q) o) 62, ax 6 2 W + S  qp~l--ko) ax x (1) 

- -  l - - I  

al 

[ 1 OS x6' + (~'--6') 4- Ox aS 

1 O2S .:., t--ko s [  at x6'+(8'--~') az ] -4- 
Ox 2 1 - -  t OFo 6 Ox (2)  

O = -- q~S; (3) 

a o - _ x , ( ~ ' - 6 ' )  a o + _  1 820 

8 Fo e -- 6 ax, Le (~ -- 6) z ax~ (4) 

as- _ x , ( ~ ' - 6 ' )  a s  + ~ a~s 
a Fo ~ -- 6 Ox I (~ -- 6) 2 ax~ (5) 

Boundary conditions for the unknown functions in the new variahles: at Fo = 0 

conditions at the boundary x~ = O: 

at the boundary x = I: 

1 oS 

60x 

at the boundary x = O: I = O. 

S - -  1, O =  1, l = O ;  

as Oo 
---- O, - -  O; 

Ox~ ax~ 

( l __ko)  S d8 0 = - - q ~ S ,  l = const ( c o n s t <  1); 
d Fo ' 

The prohlem formulated in such a way presumes the presence of a two-phase zone at the 
investigated time. Only in this case must one analyze the total system of equations for the 
two-phase region and the liquid zone. But if the two-phase zone is absent up to some time, 
then only the processes occurring in the liquid phase are investigated. In this case the con- 
versionto a unit region is accomplished by the substitution x = q[~, 

Then the system of equations describing the transfer of mass and heat in the liquid 
melt will have the form 

ao  _ x~' oo  + 1 020 (6 )  

a Fo ~ ax Le ~2 ax 2 

a s  _ xe '  0 s  -t- 1 a2s 
OFo ~, Ox e2 Ox ~ - (7)  
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This system is supplemented by the following boundary conditions: initial conditions 
(Fo = 0) : 

S = 1,  0 = I; 

conditions at the boundary x = 0: 

at the boundary x = i: 

1 a s  

e ax  

as aO 
- - = 0 ,  - -  = 0 ;  

Ox ax 

- - - - ( 1  k O) s d~ @-- - - - -q:S .  
�9 d Fo ' 

For the numerical realization of the formulated problem we use a finlte-difference ex- 
plicit scheme and an implicit scheme of construction of the solution 14], The first is used 
to find the solution of (i), while the implicit scheme is used to construct the solutions of 
(2)-(7). 

The numerical investigation of the two-phase zone was carried'out on a Dnepr-21 computer 
for the following initial data; equilibrium coefficient of distribution ko = 0.5; specific 
latent heat of crystallization L ~ 268-i0 s J/kg; coefficient of diffusion of melt ~ = 0,14, 
10 -7 m2/sec; specific heat of melt c_ = 0.725.10 s J/(kg-deg); Lewis number Le = 0,24,10-2; 
superheat of melt AT = To -- T c ~ l~ P tangent of slope angle of liquidus line, determined 
from the diagram of state, ~ = 0.414-102 ~ 

In studying the formation of the solid--liquid region we investigated the influence of: 
l) the law of distribution of the fraction of solid phase at a time one step removed from the 
initial time on the development of the two-phase zone; 2) the value of the fraction of the 
solid phase at the boundary between the solid and solid--liquid regions on the characteristics 
of the two-phase region; 3) the value of the initial concentration of the admixture on the 
distribution of the admixture itself and the fraction of the solid phise over the width of 
the transitional region. 

The necessity of studying the first question is connected with a certain arbitrariness 
in the choice of the law of distribution of the fraction of solid phase over the width of the 
two-phase region at the indicated time. Knowledge of this law is needed to find the solu- 
tion of the diffusion equation (2) at this same time. The investigation of the formation of 
the two-phase zone was begun with the solution of this equation, since it was assumed :hat 
the concentration Of the admixture is responsible for the value of the fraction of solid 
phase in the solid--liquid region. 

We analyzed three laws of distribution of the fraction of solid phase: 

i) linear (i = ~oX), 

2) parabolic (Z = foX2), 

3) I = foX :=. 

An analysis of the results shows that for a region with a characteristic size xo ~= 0.6 
m the chosen laws of distribution of the fraction of solid phase do not have a signifi,:ant 
effect on the characteristics of the two-phase zone after 9 min from the start of the ~rocess 
of solidification of the melt and up to its end. 

In studying the second question we chose the following boundary values of the fraction 
of solid phase: Zo = 0.2 and ~o ~ 0.5. For both cases we took a linear law of distribution 
of the fraction of solid phase at a time one step removed from the initial time, 

An analysis of Fig. 2 shows that with an increase in the boundary value of the fraction 
of solid phase its value within the two-phase region also increases. 

An increase in the fraction of solid phase within the transitional region leads to an 
increase in the content of the admixture in its liquid phase (Fig. 3a). This is explained 
by the fact that by virtue of the lower solubility of the admixture in the solid phase than 
in the liquid phase one can treat the solid phase as an internal source of the admixtuce 
whose power increases with an increase in the fraction of the solid phase. 

Varying the value of the initial content of the admixture showed that the higherthe 
initial concentration of the admixture, the larger the fractions of solid phase within the 
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Fig. 2. Distribution of fraction of solid phase over width of 
~est region for different times: I) ~o = 0.1-10-4; 2) 0.5,10-4; 
3) 0.i-i0-'; 4) 0.5-i~-'; 5) 0.~,10-'; 6) ~.14,10-~; solid 
curves) Co = i%, Zo = 0.2; dashed-dot curves) Co = i%, Zo = 
0.5; dashed curves) Co = 0.3%, Zo = 0.2. Straight lines I-VI) 
positions of solidus boundary at the same respective times. 
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Fig. 3. a) Distribution of concentration of admix- 
ture over width oftest region for different times: !) 
Fo = 0.1"10-4; 2) 0.5,10-~; 3) 0.1"10-3; 4) 0.5" 
10-3; 5) 0.1"10-=; 6) 0.14"10-'; solid curves) 
Co = 1%o, ~o = 0.2; dashed-dot curves) Co = ! %, Zo = 
0.5; I-VI) positions of solidus boundary at the same 
respective times; h) diagram of crystallizing region, 

two-phase region, which is especially pronounced in the initial period of solidification. 

The differences in the character of the distribution of solid phase over the width of 
the transitional region practically disappear by the end of the solidification. 

The development of the process of solidification of the melt with :allowance for the two- 
phase zone is shown rather clearly in the diagram presented in Fig. 3b. 

An analysis of Fig. 4 shows that the character of the advance of the liquidus boundary 
practically repeats the character of the advance of the solidus boundary, which is described 
hy a square-root law. The variation of the fraction of solid phase and of the concentration 
of the admixture at a local point of the region is presented in Fig. lb. 
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Fig. 4. Variation in position of boundaries of two- 
phase zone with time. 

NOTATION 

Xo, characteristic size, equal to half of width of region; ~ = Z/Xo, dimensionless co- 
ordinate; z, dimensional coordinate; Fo = Dt/x~, dimensionless time; t, dimensional time; 
@ = (T -- Tc)/(To -- Tc) , dimensionless temperature; T, To, T c, dimensional current tempera- 
ture, initial temperature of melt, and crystallization temperature of pure melt; C, (or ab- 
solute and initial Concentrations, respectively; S = C/Co, dimensionless concentratic~n; 

= ~Co/(To -- T ), constant; W = L/c (To -- T ), crystallization criterion; Le = D/a~ Lewis c p c 
number; D r coefficient of diffusion bf admixture in liquid phase of melt; a, coefficient 
of thermal diffusivity; e, coordinate of solidus boundary; 6, width of two-phase zone; 
~o, value of fraction of solid phase at solidus boundary; r, width of solidified crust; e' = 
de/dFo, velocity of advance of solidus boundary; 6' = dS/dFo, rate of change of width of two- 
phase zone. 

l. 
2. 
3. 

. 
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